% AT 5% Om bk LAz 2018 % 9 A
Vol.47 No.9 Infrared and Laser Engineering Sep. 2018

High—performance VLSI architecture for traffic sign detection

Wang Gangyi', Jin Yansheng®, Ren Guanghui’, Liu Tong'

(1. School of Instrumentation Science and Opto—electronics Engineering, Beihang University, Beijing 100191, China;
2. Jiangsu DFSai Optoelectronic Co., LTD., Nantong 226001, China;
3. School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150001, China;

4. Tianjin Sino—German University of Applied Sciences, Tianjin 300350, China)

Abstract: Traffic sign detection is an important function for driver assistant systems, but the high real -
time requirement makes it a very challenging task. A high—performance prohibitory traffic sign detection
VLSI (Very Large Scale Integration) architecture was presented. Both color and shape characteristics were
utilized in the proposed architecture by detecting circles using circular Hough transform in the red edge
bitmap. The local property of circular Hough transform was exploited so that the memory requirement
was significantly reduced comparing with common architecture. All the radii were voted concurrently to
make full use of the parallelism of logic elements and memory in FPGA. The proposed architecture was
implemented on Altera’s EP3C55F484C6 FPGA. The maximum frequency of the implementation was 122
MHz and the resource requirement was acceptable. Experimental results show that the architecture can
achieve a throughput up to 115 M pixels/s and was robust to adverse situations such as bad lighting
condition, partial occlusion, multiple signs clustered and similar background color.

Key words: traffic sign detection; object detection; circular Hough transform; FPGA; real—time
CLC number: TP391.4 Document code: A DOI: 10.3788/IRLA201847.0926001

%'I‘i ﬁ_ﬁ *T{IL.\ IIJ-"H:Eij%E/J VI—SI =H *I] ivl-

IR, R AR, K @

(1. B FMEMRKF NERHFE L TRFR, LK 100191;
2. AA A A RG] L did 226001 ;
3.ARIELERT T 58 TRFR, ZAIIL 5 RIE 150001;
4. REPIBEAERKF, KE 300350)

O OE. REAFAESAENRE R RGO TR, 12T L AR e B R AR A B

RBET —Fr B A RSN A e) VLSI 454, 12 FPGA + &6 LR T ZoARiE, 4N
HERRERARAHRARES BRI, ERARO L ERG LA T RAREXERENEE, @i
FHEAEXR TR EIRFE TRENEMNEAAEATBEFRTFAEH, MAXERNRE
#93% i+ 4% FPGA #93% 45 3 50 Fo 1 A 69 FFAT AT VA A 5 R A8 . % % M 4 Altera 2 3] 49 EP3C55F484C6

Y% B #3:2018-04-07; {&£1T H #1:2018-05-12

BB FHKA ARSI 4 (61605007)

fEE & A ERIR1983-), 5, PRI, {4, 32 28 A iR) R A B g £ 77 181 % BF 98 . Email: wanggangyi@buaa.edu.cn
BINAESE : 4 RME(1980-), T, T AR, 40 4, 32 32 A 35 [0 1% Ab B0 20 40 B 4% ik A 2K R 48 05 i 19 DF 5 . Email: jannson_3@163.com

0926001-1

bk T2

% O M www.irla.cn % 47 &
A FPGA L i# 47 7 %4k, K 5 KX 7T 38 4790 & 1% 3] 122 MHz, ﬂmﬁ&;)ﬂﬁ*r%xm%m K LER
F O E M AR TR A 115 MAEE/s, AR B &40 B Sf i3S | LARE o AR &

FARAN AR RA RIF) 2 6
SR BTSN ;

0 Introduction

Although traffic signs are designed with fixed
colors and shapes, it’s still a challenging computer
vision problem to detect traffic signs in complex
traffic scenes. The main difficulties include bad

lighting condition, similar background color,
multiple signs clustered, partial occlusion, etc. In
addition, the traffic sign recognition system should
detect signs within very short latency so that the
driver has enough time to take action.

One important characteristic of traffic signs is
that they are painted in fixed colors. Many
detection methods extract pixels which have the
similar colors as traffic signs in order to quickly
get rid of objects of different colors. The major
problem for color extraction methods is how to be
invariant to different lighting conditions. Some
researchers™ use relative RGB components which
are more robust to

lighting conditions, some

researchers™ use the hue—saturation—intensity (HSI)
color space, which is based on color perception of
human beings. The hue and saturation components
are invariant to intensity changes, thus color of
pixels can be easily determined by thresholding
the hue and

over saturation components. To

reduce the computational cost, some researchers
use the hue—saturation—value (HSV) color space,
which is similar to HSI, but easier to be converted
from the RGB color space™.

Shape is another important characteristic of
traffic signs which are usually circular, rectangular
or triangular ™. Hough transform is a kind of shape

detector which can detect such shapes robustly,

but the computational complexity and memory

3] #ﬂi‘iﬁld ; EREH

FPGA; S:rMiE

consumption is often huge. Garcia et al. ™ use

Hough transform in restricted regions to reduce
the computational complexity. Barnes et al. 9
propose a Hough like detector based on radial
symmetry which can detect regular polygons and
circles very fast, but still not in real time. Some
other researchers use genetic algorithm to detect
shapes. Aoyagi et al. extract points of interest
with Laplacian filter to generate a binary image,
and search for circles with genetic algorithm.
Escalera et al.™ first extract regions of interest
with specific color, and then search for shapes in
the parameter space spanned by parameters of
translation, rotation and scale. However, the
method is too slow for real-time applications.

In this paper, we propose a high—performance
VLSI

for prohibitory traffic sign detection. We utilize

(Very Large Scale Integration) architecture

both the color and shape information to detect
prohibitory signs which usually have red color and
circular shape. The architecture first generates a
red bitmap from the input image, and then gets
edge pixels and their gradients from the red
Hough

performed to detect circles in the edge bitmap,

bitmap. Next, circular transform is
followed by a verification step. Detected circles
which pass the verification are finally output as
ROIs.

Hough transform, which significantly reduces the

We exploit the local property of circular

memory requirement. The proposed architecture is
highly parallelized and requires acceptable logic
elements and memory for low—-end FPGAs (Field
Programmable Gate Array). We implement the
architecture on Altera’s EP3C55F484C6 FPGA and
get a high throughput up to 115 M pixels/s, which
real —time of most

meets the requirements

0926001-2

bk T2

% 9 M

www.irla.cn

% A7 %

applications. Experimental results show that the
architecture is robust to adverse situations such as
bad lighting condition, partial occlusion, multiple

signs clustered and similar background color.

1 Description of the traffic sign detection
method

Before describing the proposed hardware
architecture, we first briefly introduce our traffic
sign detection method. Figure 1 shows the flow

diagram of the method.

Input Ciroul
image |Red bitmap Edge info. treutar e ROIs
—= e o = . ' Hough [—Verification—>
extraction extraction
transfrom

Fig.1 Flow diagram of proposed traffic sign detection method

All the red pixels are first extracted from the

input image to generate a red bitmap. To
determine whether a pixel is red, HSV color space
is employed for its invariance to lighting condition
and small computational cost. To convert color

space from RGB to HSV, the following equation

is used:
G-B -
| MAX TN Mod 6 |60°, if R=MAX
[B-R o ip v
H=| |2+ s |00° if G=MAX
R-G 0 if p_
|4+ AN |60 if B=MAX
MAX-MIN
= Pt 1
S MAX S
V=MAX
where MAX and MIN are the maximum and

minimum of RGB respectively. Then the value of

the red bitmap at position x 1is extracted as

follows:
RB(x)=

1, Hx)=360°-Th,, or H(x)<Th,, and S(x)=Th,

0, others)
where Th,, Th, are two thresholds for H and §

components respectively.

To perform circular Hough transform, edge
bitmap E should be extracted from the red bitmap
RB. Many edge detection methods can be used to
extract edge

bitmap, but for computational

simplicity, we use the following equation to
determine whether a pixel is an edge pixel:

E=RB-(RBOSE) (3)
where SE is a 3-by-3 square kernel, © denotes
morphological erosion.

The circular Hough transform also requires
the gradient directions of edge pixels. In order to
get the gradient direction at edge pixel x, the red
degree fx(x) is first evaluated as follows!:

_min(R(x)-G(x),R(x)—-B(x))
S = R)+ G (x)+B(x))

Then the horizontal and vertical gradients G,(x)
and G,(x) of fy(x) are calculated with the Sobel

operator, and the gradient direction 6(x) can be

calculated as follows:

- Gy(x)
O(x)—arctan(G) (6))
The extracted edge bitmap and gradient

directions are sent to the circular Hough transform
(CHT)

Hough transform here. Generally, a circle can be

module. We briefly describe circular

represented as the following equation:
2 2 2
(x=x.) +(y=y.) =r (6)
where (x_, y.), r are the center and radius of the

circle respectively. Thus, every circle can be

mapped to a point in the 3 —D parameter space

spanned by x_, y_, r. To find circles in an edge

bitmap, we first vote to the parameter space with
the edge pixels. The voting rule is if an edge pixel

(x,, y,)lies on a circle (x_, y., r), then the circle

gets one vote from the point. For the pixel (x;, y,)
can lie on infinite circles, we need to digitalize
the 3 -D parameter space into small bins. After
voting, we can simply search for the bins with
votes more than a threshold, and the parameters of

such bins probably correspond to circles in the

0926001-3

oG T A2

% 9 M

www.irla.cn

% A7 %

edge bitmap.

It is clear that parameters that voted by an
edge pixel generate a 2 -D surface in the 3 -D
parameter space, which makes the computational
complexity very large. One way of solving the
problem is utilizing the gradient directions of edge
pixels. As the gradient direction of any pixel on a
circle passes through the center of the circle, we
need only vote for the parameters lying on the
gradient direction of an edge pixel, which is
obviously a 1 —-D line in the parameter space.
Therefore, the computational complexity is
reduced significantly.

Another problem for circular Hough transform
is the huge memory consumption. For a N-by-M
image, if we digitalize the parameter space with
the precision of 1 pixel, the memory requirement
for voting is approximately NMP words, where P
is the number of radii to be detected. Such
requirement is usually too high for on —chip
memory in FPGA, while off —chip memory is also
not a good choice for it makes the parallelizing of
voting impossible.

We solve this problem by localizing the
voting process. In real traffic images, the range of
radii of the traffic signs is usually limited. Given

that the maximum radius of a traffic sign iS 7.
in pixels, all the edge pixels (x,, y,) voting for a
circle centered at (x. y.) are bound to satisfy the
conditions: X; € [Xc—Fmax, Xe+Fmax] aNd Y, € [Ve=Fmax> Vet
Fmax]. With this property, we design a localized
voting unit as shown in Fig.2(a).

The voting unit consists of 9 ry, —bY —Fpux
blocks. For circles centered in the central block,
all the votes for the circle are bound to come from
edge pixels in this voting unit. Therefore, the final
voting result in the central block can be obtained
without knowing edge information outside the
voting unit. To get the voting result of the whole
simply slide the voting unit

image, we can

throughout the image with the step of r,,, as
shown in Fig.2(b). Therefore, Memory requirement
of the whole image is equal to that of the voting
unit, which is only rim P, and usually acceptable
for on—chip memory in FPGA.

rlnll

7

max

r,

—

\

./ Gradient

&irection

(a) Voting unit

e

—%

[Voting f———
I unit /

(b) Sliding voting unit throughout the image

Fig.2 Localized voting scheme

After all the candidate circles are detected by
the CHT module, the verification module checks
whether the circles really exist in the edge bitmap.
The criterion is that if more than half of the pixels
of a candidate circle are edge pixels, then the
candidate circle is determined to be a true circle.
Circles satisfying the criterion are finally output

as ROIs.

2 Hardware architecture

Based on the method above, we propose an

high -performance hardware architecture for
detecting prohibitory signs. Figure 3 shows the
block diagram of the proposed architecture.

The entire architecture can be divided into

0926001 -4

bk T2

% 9 M

www.irla.cn

% A7 %

Edge RAM & candidate
circle FIFO, ping-pong

1
]
|
1
I
‘ i
! 1
! 1
! I
| l » T l | Result
: Circular L(xp,1)
: 1
!]
! |
! 1

Red bitmap
extraction

Edge info. Hough

: Verification
extraction
transform

‘ Off-chip memory, ping-pong

Fig.3 Block diagram of the proposed architecture

two major parts. The preceding part includes the
red bitmap extraction module and the edge
information extraction module, while the backing
part includes the CHT module and the verification
module. Edge information is stored in a set of
off —chip ping —pong memory which enables the
two parts work in parallel. The CHT module and
the verification module exchange data with a set
of on —chip ping —pong memory named
RAM" and "Candidate circle FIFO". We will

describe the implementation of each module in the

"edge

following sections.
2.1 Red bitmap extraction module

The two tasks for the red bitmap extraction
module are to determine whether a pixel is red
and to calculate the red degree of the pixel. We
simplify equation (1) and (4), and design the RTL
architecture. The architecture is a 2 -—stage

pipeline, the computational burden 1is evenly
assigned to the two stages to get the maximum
throughput. There is a division operation in
Equation (4), which could introduce long delay.
We divide the operation into two steps: first get
the reciprocal of the denominator in a lookup
table stored in an on—chip memory, then multiply
which with the numerator. As the bit width of the
(10 bits) is

consumption of the lookup table is acceptable.

denominator small, the memory

2.2 Edge information extraction module
As described in Section 2, to get the edge
their directions, the

pixels and gradient

information of the eight neighbors of an edge

pixel is needed. We use two line FIFOs to solve
this problem. The red flag and red degree f; is
combined into a word and stored sequentially into
the line FIFOs. In each clock cycle, three new
words, two from the FIFOs and one from the input
port, are pushed into the register bank R1 to RO,
thus, the red flags and gradient directions of a 3—
by-3 region are stored in R1 to R9. As shown in
Fig.4, the directional gradients G, and G, are
calculated with a 2 —stage pipeline and then
converted to polar coordinate to get the gradient
direction 6. As the values actually needed by the
CHT module are the sine and cosine of 6, the two
values are directly calculated by changing p to 1
and converting (p, 6) back to Cartesian coordinate.
The edge flag is calculated with a combinational
logic operation followed by a series of delay
registers to make it synchronized with cosf and
sinf. Finally, is edge, cosf and sinf are stored
together in the off—chip memory.

Irx IRI1...IR9
L b el

FRx &
RS

isiedge

—|‘G\ 1
Cart to 7’ |—' Red to ﬁ

Rad cart ﬂ.

FR1

FR4<<]l .
FR7

R

FR3

FRO<<]l , | JIR&
FRY

e

FR7

FR8<<] o
FRY

—

I §
W 35} —_—

FR1

FR2<<]l . | Jfoa
FR3

e

Fig.4 Pipeline for calculating the edge flag and

gradient direction

2.3 Circular Hough transform module

After extracting edge information of a frame,
the off —chip ping—-pong memory is switched, and
edge information could be accessed by the circular
Hough transform (CHT) module.

The CHT module

searches for candidate

circles block by block locally, as described in

0926001-5

bk T2

% 9 M

www.irla.cn

% A7 %

Section 2. The voting equation is as follows:
X, =x,+[r-cos0]
. (D
y.=y,+[r-sin06]

where (x_,y.), r is the center and radius of the

circle, (x,, y,) is the edge pixel, [-] means
rounding to the nearest integer. If the final votes
of a circle are not less than threshold Th;, then

we record (x,,y,, r) together with the votes and

send them to the verification module.
The architecture of the CHT module is shown

in Fig.5. The edge information is first accessed by

1 1
1 1
H Vote In;s;[(;al !
1 1
i [RAM FIFO | !
i I i
1 1
: ' | candidat
! lL,| Candidate
: Vote —* Recorder Il circle FIFO
i I i
1 1
1 1
Off-chip | 1| Edge info. : Edge
—t» T
memory | reader 1 RAM
1
1 1

Fig.5 Architecture of the CHT module

the edge information reader submodule, and then
sent to the voter submodule. Voter submodule
accumulates the votes for each circle which are
stored in the vote RAM. While accumulating

votes, the voter also monitors all the (x_,y, , r)
being accumulated, if the votes of any (x_.,y,, r)
equal to the threshold Ths, the (x_,y_,r) are sent
to the recorder. In this way, all the candidate
circles are recorded during the voting process, and
no extra searching process for candidate circles is
needed. The recorder stores the candidate circles
in the internal candidate FIFO without votes for
the final votes are not available during voting.
Then finished, the

recorder reads the final votes of the all the (x_,y_, r)

after the voting process

stored in the internal candidate FIFO, and output

the votes together with the corresponding (x_,y, ,r)

to the external candidate circle FIFO. While
sending edge information to the voter submodule,

the edge information reader submodule also

generates a local edge bitmap within the voting
unit, and stores it in the edge RAM, which is used
in the verification module.

The voter submodule consists of P=r,x—7"mn+1
sub—voters, each of which corresponds to a radius
to be detected. All the sub —voters accumulate
votes concurrently, thus, there are also P on—chip

RAMs collaborating with the sub —voters. Each

RAM has r2

max

words, storing votes of each

possible center. The voting process is a 4 —stage
pipeline, as shown in Fig.6. As we don’t know
whether the gradient direction is to or away from
the center of the circle, two centers for each
radius have to be voted. Therefore, the pipeline is
able to process one edge pixel in two clock
cycles, unless more than one candidate circles are
produced by an edge pixel, in which case the

pipeline has to be paused to send the candidates to

the recorder submodule in multiple cycles.

Sub-voter 1 —/
Calculate| | Get vote A ceumulatas Update votel| |
(x,y) ||from RAM to RAM z
9
Sub-voter 2 2.lcandidate
Calculate| | Getvote Update vote|| |S | circles
Edg . : p = |_circleg
inf%)e. " (x,».) [|from RAM ALClllTlLlldteH to RAM 1“.2
" : : a
: a
i3
Sub-voter P (:D‘
Calculate| | Getvote Accumulate Update vote|| |
(x,») ||from RAM toRAM [T _|

Fig.6 Architecture of the voter submodule

2.4 Verification module

After the CHT module finished voting a
block, the ping-pong structure of the edge RAM
and candidate circle FIFO are switched so that
they can be accessed by the verification module.
The task for the verification module is to check
whether the candidate circles really exist in the
edge bitmap. Figure 7(a) shows the block diagram
of this module.

The verification module consists of two
submodules. The maximum vote finder submodule
circle with the

searches for the candidate

maximum votes and sends it to the candidate

0926001-6

bk T2

% 9 M

www.irla.cn

% A7 %

Verification

1]
| I
! module !
| i
| |
Candidate ! Maximum |
FIFO ! vote finder !
= a
]
! i
I 1
]
Edge i Candidate § R
RAM ! checker !
| i
I 1

I

LN
]_l_’ l
Rad to Hit
8-bit cart
—>|

counter
—>|
counter +
—>

Th,

(b) Candidate checker submodule

Fig.7 Architecture of the verification module

checker submodule, which counts the number of
edge pixels the circle passes through.
For the maximum vote finder submodule, each

(x,,y,,r) of the candidate circles are first read

from the FIFO, and then compared with the (x:,y: ,r*)

of the last verified circle in the block. Verified
circle is referred to as a candidate circle which
has been proved to be a true circle in this paper.

If the parameter (x,,y,,r;) of the i—th candidate

circle satisfies Ix, —le$7, Ir, —r I<2 and Ix,, —le$7,
then the circle is abandoned, which means it is too
similar with the verified circle. In this way, we
prevent multiple circles are detected from the
same circle. The other circles are sent to the vote
comparator on the one hand, and on the other
hand sent back to the candidate FIFO for the next
searching cycle. The vote comparator compares
the votes of the input circle with the maximum
votes found in current searching cycle, and
replaces the maximum votes if the input one is
larger. After all the circles in the candidate FIFO
have been processed, the circle with the maximum

votes is output to the candidate checker submodule,

and the vote finder submodule waits until the
candidate checker submodule finishes checking the
circle, then starts the next searching cycle.

The architecture of the candidate checker
submodule is shown in Fig.7 (b). With a polar to
Cartesian coordinates convertor, an 8—bit counter
and two adders, 256 points evenly distributed on
the circle are generated successively. Then the hit
counter calculates how many of the points
correspond to edge pixels stored in the edge RAM.
If the number is not less than threshold Th,, the
circle is verified to be a real circle, and is output

as an ROI. On the other hand, (x,,y,, r) of the

circle is sent back to the maximum vote finder
submodule. The searching and checking process
continually runs until there is no candidate circle
at all in the FIFO.

3 Evaluation

In order to evaluate the proposed architecture,
we implement it on FPGA using VHDL language.
The selection of parameters, computational
accuracy, throughput analysis, and synthesis result
are discussed in the following sections.

3.1 Parameter selection

As different results could be produced under
different parameters in the architecture, we discuss
parameter selection here. Th, and Th, is used in
the red bitmap extraction module to restrict the
range of H and S components for a red pixel.
According to the experimental results, the
detection accuracy is insensitive to slight value
therefore, we

changes of the two parameters,

choose the wvalues of the two parameters
empirically. Th; used in the CHT module is the
minimum vote for a candidate circle. Because too
large value for Th; can lead to low recall ratio,
while too small value increases the burden of the
choose 9 for a

verification module, we

compromise. Th, used in the verification module is

0926001-7

BEECY & ot

% 9 1A

www.irla.cn

% A7 %

the minimum hit of edge pixels for a circle, and
we choose 128 to ensure not less than a half of
the circle hit edge pixels. ry, and r,,, restrict the
range of radii to be detected. As different amount
of logic elements (LE) and on—chip memory is
needed for different r,, and r,.,, we evaluate two
sets of 7y and 7.
3.2 Simulation and throughput analysis

The proposed architecture is simulated with

real images taken in traffic scenes. Results show

that the proposed architecture can detect most of
the signs and is robust to many kinds of adverse
situations. Four typical detection results are shown
in Fig.8, which represent adverse situations such
as bad

multiple signs clustered and similar background

lighting condition, partial occlusion,
color, respectively.

Table 1 lists the cycle requirement for each
module of the architecture to process the images

in Fig.8. According to the experiments, the CHT

Tab.1 Cycle requirement of the modules in different images

Edge pixels/all pixels Red bitmap module Edge info. module = CHT module Verification module Overall
Fig.14(a) 741/307 200 323 968 3 246 670 83 313 1533 325 330
Fig.14(c) 4 116/307 200 323 968 3 246 670 197 177 2 646 325 336
Fig.14(e) 8 233/307 200 323 968 3 246 670 264 887 3 946 325 336
Fig.14(g) 21 360/307 200 323 968 3 246 670 458 449 1515 458 984

module requires less cycles in most of the images
except for the rarely occurred cases in which the
number of edge pixels are greater than 4% of the
whole image, as shown in Fig.8 (h). Therefore, in
most cases, the

throughput of the proposed

architecture is 0.946 pixels/cycle.

Fig.8 Detection results by the proposed architecture.

(a),(c),(e),(g) Original image (b),(d),(f),(h)

Edge bitmaps and detected circles

3.3 Synthesis

We synthesize the proposed architecture with
Altera Quartus IT 11.1 using EP3C55F484C6, and the
result is shown in Tab.2. The requirement of logic
elements and memory is acceptable, and the
throughput of the architecture is up to 115M pixels/s

with the maxim um frequency around 120 MHz.

Tab.2 Synthesis result of the proposed

architecture
Fuin=10, Fp=32 Fain=10, 7pux=50
Logic elements 7 464 10 722
Memory/bits 346 496 1 083 596
Maximum frequency/MHz 122 113

0926001-3

bk T2

% O M www.irla.cn % 47 &
The resource requirement can be reduced signal recognition system based on template matching

significantly if we use less voter sub—modules in
the CHT module at the price of lower throughput.
For video streams with lower pixel rates, such

trade—off is worth considering.
4 Conclusion

In this paper, we propose a high performance
architecture for prohibitory sign detection. The
architecture utilizes both color and shape
characteristics of prohibitory signs by detecting
circles using circular Hough transform in the red
edge bitmap. The local property of circular Hough
transform is exploited and the whole image is
divided into blocks, in which circles are detected
locally. In this way, the computational complexity
and the memory requirement of the circular Hough
transform is significantly reduced.

The proposed architecture is implemented on
Altera’ s EP3C55F484C6 FPGA and the resource
requirement is acceptable. The maximum frequency
is 122MHz, which enables the architecture to process
video streams with pixel rates up to 115 M pixels/s.
We evaluate the proposed architecture with images
of real traffic scenes, and demonstrate the
architecture can robustly detect prohibitory signs
under many kinds of adverse situations such as bad
lighting condition, partial occlusion, multiple signs

clustered and similar background color.

References:

[1] Varan S, Singh S, Sanjeev Kunte R, et al. A road traffic

0926001-9

[2]

[4]

[5]

[6]

[7]

[8]

[9]

employing tree classifier [C]//Proceedings of the
International Conference on Computational Intelligence
and Multimedia Applications, 2007: 360-365.

Nguwi Y Y, Cho S Y. Emergent self—organizing feature
map for recognizing road sign images [J]. Neural
Computing & Applications, 2010, 19(4): 601-615.
Garcia —Lamont F, Cervantes J, Lopez A, et al.
Segmentation of images by color features: A survey[J].
Neurocomputing, 2018, 292: 1-27.

Hmida R, Ben Abdelali A, Mtibaa A. Hardware
implementation and validation of a traffic road sign
detection and identification system [J]. J Real —Time
Image Process, 2018, 15(1): 13-30.

Garcia—Garrido M A, Sotelo M A, Martin—Gorostiza E.
Fast road sign detection using hough transform for
assisted driving of road vehicles[C]//Proceedings of the
EUROCAST Computer Aided Systems Theory, 2005:
543-548.

Barnes N, Loy G, Shaw D, et al. Regular polygon
detection[C]//Proceedings of the Tenth IEEE International
Conference on Computer Vision, 2005: 778-785.

Aoyagi Y, Asakura T. A study on traffic sign
recognition in scene image using genetic algorithms and
neural networks [C]//Proceedings of the IEEE IECON
22nd International Conference on Industrial Electronics,
Control, and Instrumentation, 1996: 1838-1843.
Escalera A d 1, Armingol J M, Mata M. Traffic sign
recognition and analysis for intelligent vehicles [J].
Image and Vision Computing, 2003, 21(3): 247-258.
Ruta A, Li Y M, Liu X H. Real —time traffic sign

recognition from video by class—specific discriminative

features[J]. Pattern Recognition, 2010, 43(1): 416-430.

